Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Free Radic Biol Med ; 208: 165-177, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37541455

RESUMO

Dimedone and its derivates are used as selective probes for the nucleophilic detection of sulfenic acids in biological samples. Qualitative analyses suggested that dimedone also reacts with cyclic sulfenamides. Furthermore, under physiological conditions, dimedone must compete with the highly concentrated nucleophile glutathione. We therefore quantified the reaction kinetics for a cyclic sulfenamide model peptide and the sulfenic acids of glutathione and a model peroxiredoxin in the presence or absence of dimedone and glutathione. We show that the cyclic sulfenamide is stabilized at lower pH and that it reacts with dimedone. While reactions between dimedone and sulfenic acids or the cyclic sulfenamide have similar rate constants, glutathione kinetically outcompetes dimedone as a nucleophile by several orders of magnitude. Our comparative in vitro and intracellular analyses challenge the selectivity of dimedone. Consequently, the dimedone labeling of cysteinyl residues inside living cells points towards unidentified reaction pathways or unknown, kinetically competitive redox species.


Assuntos
Glutationa , Ácidos Sulfênicos , Ácidos Sulfênicos/química , Glutationa/metabolismo , Cicloexanonas/química , Oxirredução , Cisteína/metabolismo
2.
Methods Enzymol ; 683: 291-308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37087193

RESUMO

Among the biologically relevant reactive oxygen species (ROS), hydrogen peroxide (H2O2) has special properties. H2O2 can diffuse across membranes, has a low reactivity, and is very stable. Deprotonated cysteine residues in proteins can be oxidized by H2O2 into a highly reactive sulfenic acid derivative (-SOH), which can react with another cysteine to form a disulfide. Under higher oxidative stress the sulfenic acid undergo further oxidation to sulfinic acid (Cys-SO2H), which can subsequently be reduced. The sulfinic acid can be hyperoxidized to sulfonic acid (Cys-SO3H), whose reduction is irreversible. Formation of sulfenic acids can have a role in sensing oxidative stress, signal transduction, modulating localization and activity to regulate protein functions. Therefore, there is an emerging interest in trying to understand the pool of proteins that result in these sorts of modification in response to oxidative stress. This is known as the sulfenome and several approaches have been developed in animal and plant cells to analyze the sulfenome under different stress responses. These approaches can be proteomic, molecular, immunological (i.e., antibodies), or expressing genetically encoded probes that specifically react to sulfenic modifications. In this chapter, we describe an additional approach that allows visualization of sulfenic modification in vivo. This is newly developed fluorescent probe DCP-Rho1 can be implemented in any plant cell to analyze the sulfenic modification.


Assuntos
Cisteína , Ácidos Sulfênicos , Animais , Ácidos Sulfênicos/química , Cisteína/química , Corantes Fluorescentes , Células Vegetais/metabolismo , Peróxido de Hidrogênio/química , Proteômica , Ácidos Sulfínicos , Proteínas/química , Oxirredução
3.
Curr Protoc ; 2(10): e559, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36200822

RESUMO

The reversible oxidation of cysteine thiol groups to sulfenic acid by reactive oxygen species (ROS) such as hydrogen peroxide can impact protein function, activity, and localization. As a consequence, ROS have profound effects on cell functions including proliferation, differentiation, and survival. Furthermore, there are clear associations between the effects of ROS on cells and the etiology of several diseases including cancer and neurodegeneration. In spite of the importance of cysteine sulfenylation as a validated post-translational modification, its labile nature impedes efficient and reproducible detection of proteins with cysteine sulfenic acid residues. To overcome this challenge, we developed a novel cell-permeable bifunctional reagent, consisting of two linked bicyclo[6.1.0]nonyne (BCN) moieties coupled with a short ethylenediamine-derived linker (BCN-E-BCN) that enables the detection of sulfenylated proteins in vitro and in intact cells. The two symmetrical BCN groups allow protein sulfenic acids to be selectively tagged with a BCN at one end while allowing for copper-free click chemistry with azide-tagged reagents of the opposite BCN. In this protocol, the synthesis of BCN-E-BCN and its use to detect cysteine sulfenic acids will be detailed. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Copper-mediated cyclopropanation of 1,5-cyclooctadiene Basic Protocol 2: Synthesis of endo- and exo-bicyclononyne Basic Protocol 3: Synthesis of endo-BCN-E-BCN Basic Protocol 4: BCN-E-BCN treatment of wild-type and cysteine-deficient mutant recombinant cofilin protein Basic Protocol 5: BCN-E-BCN labeling in live cells Basic Protocol 6: Western blotting and visualization of BCN-E-BCN-labeled samples.


Assuntos
Azidas , Ácidos Sulfênicos , Fatores de Despolimerização de Actina , Azidas/química , Reagentes de Ligações Cruzadas , Cisteína/análogos & derivados , Cisteína/metabolismo , Etilenodiaminas , Peróxido de Hidrogênio , Indicadores e Reagentes , Proteínas/química , Espécies Reativas de Oxigênio , Ácidos Sulfênicos/química , Compostos de Sulfidrila
4.
Org Biomol Chem ; 20(37): 7448-7457, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36082757

RESUMO

The synthesis of some bolaamphiphiles is described. It is a convergent approach that allows the linkage of a glucosyl derivative to a bis-functionalized platform, via a copper-free Sonogashira cross-coupling. The central core was obtained from the reaction of a suitably substituted bis-sulfoxide with diethynyl benzenes. The intermediates of such reaction are sulfenyl functions that are easily added to one triple bond of the unsaturated molecules. The functionalization at the central core, through the nucleophilic addition of ammonia or piperidine onto the two vinyl sulfonyl groups already present in the backbones of the molecules, opened the way to the preparation of more complex derivatives. The observation of the formation of new stereogenic carbons with an unexpected significantly high diastereoselectivity was justified and supported by preliminary theoretical calculations. The two ending glucosyl moieties were favourably deprotected to afford the amino-functionalized bolaamphiphilic molecules.


Assuntos
Amônia , Ácidos Sulfênicos , Piperidinas , Ácidos Sulfênicos/química , Sulfóxidos
5.
Talanta ; 250: 123745, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870285

RESUMO

Cysteine (Cys) is subject to a variety of reversible post-translational modifications such as formation of sulfenic acid (Cys-SOH). If this modification is often involved in normal biological activities, it can also be the result of oxidative damage. Indeed, oxidative stress yields abnormal cysteine oxidations that affect protein function and structure and can lead to neurodegenerative diseases. In a context of population ageing, validation of novel biomarkers for detection of neurodegenerative diseases is important. However, Cys-SOH proteins investigation in large human cohorts is challenging due to their low abundance and lability under endogenous conditions. To improve the detection specificity towards the oxidized protein subpopulation, we developed a method that makes use of a mass spectrometer coupled with visible laser induced dissociation (LID) to add a stringent optical specificity to the mass selectivity. Since peptides do not naturally absorb in the visible range, this approach relies on the proper chemical derivatization of Cys-SOH with a chromophore functionalized with a cyclohexanedione. To compensate for the significant variability in total protein expression within the samples and any experimental bias, a normalizing strategy using free thiol (Cys-SH) cysteine peptides derivatized with a maleimide chromophore as internal references was used. Thanks to the differential tagging, oxidative ratios were then obtained for 69 Cys-containing peptides from 19 proteins tracked by parallel reaction monitoring (PRM) LID, in a cohort of 49 human plasma samples from Alzheimer disease (AD) patients. A statistical analysis indicated that, for the proteins monitored, the Cys oxidative ratio does not correlate with the diagnosis of AD. Nevertheless, the PRM-LID method allows the unbiased, sensitive and robust relative quantification of Cys oxidation within cohorts of samples.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/diagnóstico , Proteínas Sanguíneas/metabolismo , Cisteína/análogos & derivados , Cisteína/análise , Humanos , Maleimidas , Espectrometria de Massas , Oxirredução , Peptídeos/química , Ácidos Sulfênicos/química , Ácidos Sulfênicos/metabolismo , Compostos de Sulfidrila/química
6.
FEBS J ; 289(18): 5480-5504, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35490402

RESUMO

Protein phosphorylation is a major post-translational modification involved in cell signalling that regulates many physiological and pathological processes. Despite their biological importance, protein phosphatases are less studied than protein kinases. Importantly, the activity of Cys-based protein tyrosine phosphatases (PTPs) can be regulated by reversible oxidation. The initial two-electron oxidation product of the active site Cys is a sulfenic acid (Cys-SOH) that can then undergo distinct outcomes, such as the disulfide bond or a sulfenyl amide formation. Here, we review the biochemical and structural features of PTPs to find patterns that might specify their oxidation products, aiming to get insights into redox regulatory mechanisms. Initially, the structure and biochemistry of PTP1B is presented. Then, we describe structural aspects that are relevant for substrate recognition and catalysis. Notably, all PTPs contain critical Cys residues for the catalysis of dephosphorylation that is prone to oxidative inactivation, which are frequently found oxidized in cells under physiological conditions, such as upon growth factor stimuli. However, direct oxidations of Cys residues in PTPs by H2 O2 are rather slow. Therefore, we discuss possible mechanisms that may account for this apparent contradiction between biological and chemical redox aspects of PTPs. Furthermore, we performed a systematic analysis of the distance between active site cysteine and its backdoor cysteine with the attempt to analyse the preference between disulfide bond formation or sulfenyl amide interaction upon oxidation. In summary, PTPs have been showing many possibilities to auto-protect from irreversible oxidation, which is important for cell signalling regulation.


Assuntos
Cisteína , Ácidos Sulfênicos , Amidas/química , Cisteína/química , Dissulfetos/metabolismo , Oxirredução , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Ácidos Sulfênicos/química , Ácidos Sulfênicos/metabolismo
7.
Protein Sci ; 31(5): e4290, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35481660

RESUMO

Peroxiredoxins use a variety of thiols to rapidly reduce hydroperoxides and peroxynitrite. While the oxidation kinetics of peroxiredoxins have been studied in great detail, enzyme-specific differences regarding peroxiredoxin reduction and the overall rate-limiting step under physiological conditions often remain to be deciphered. The 1-Cys peroxiredoxin 5 homolog PfAOP from the malaria parasite Plasmodium falciparum is an established model enzyme for glutathione/glutaredoxin-dependent peroxiredoxins. Here, we reconstituted the catalytic cycle of PfAOP in vitro and analyzed the reaction between oxidized PfAOP and reduced glutathione (GSH) using molecular docking and stopped-flow measurements. Molecular docking revealed that oxidized PfAOP has to adopt a locally unfolded conformation to react with GSH. Furthermore, we determined a second-order rate constant of 6 × 105 M-1  s-1 at 25°C and thermodynamic activation parameters ΔH‡ , ΔS‡ , and ΔG‡ of 39.8 kJ/mol, -0.8 J/mol, and 40.0 kJ/mol, respectively. The gain-of-function mutant PfAOPL109M had almost identical reaction parameters. Taking into account physiological hydroperoxide and GSH concentrations, we suggest (a) that the reaction between oxidized PfAOP and GSH might be even faster than the formation of the sulfenic acid in vivo, and (b) that conformational changes are likely rate limiting for PfAOP catalysis. In summary, we characterized and quantified the reaction between GSH and the model enzyme PfAOP, thus providing detailed insights regarding the reactivity of its sulfenic acid and the versatile chemistry of peroxiredoxins.


Assuntos
Peroxirredoxinas , Plasmodium falciparum , Glutationa , Peróxido de Hidrogênio/química , Simulação de Acoplamento Molecular , Peroxirredoxinas/química , Peroxirredoxinas/genética , Ácidos Sulfênicos/química
8.
Biochim Biophys Acta Gen Subj ; 1866(1): 130032, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627945

RESUMO

BACKGROUND: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is one of the major targets of NO in cells, especially in neurodegenerative diseases. S-Nitrosylation of GAPDH is accompanied by its translocation into the nucleus with subsequent apoptosis. The product of GAPDH modification by NO is considered to be S-nitrosylated GAPDH (GAPDH-SNO). However, this has not been confirmed by direct methods. METHODS: Products of GAPDH modification in the presence of the NO donor diethylamine NONOate were analyzed by MALDI- and ESI- mass spectrometry methods. RESULTS: The adduct between GAPDH and dimedone was detected by MALDI-MS analysis after incubation of S-nitrosylated GAPDH with dimedone, which points to the formation of cysteine-sulfenic acid (GAPDH-SOH) in the protein. Analysis of the protein hydrolysate revealed the incorporation of dimedone into the catalytic residue Cys150. An additional peak that corresponded to GAPDH-SNO was detected by ESI-MS analysis in GAPDH after the incubation with the NO donor. The content of GAPDH-SNO and GAPDH-SOH in the modified GAPDH was evaluated by different approaches and constituted 2.3 and 0.7 mol per mol GAPDH, respectively. A small fraction of GAPDH was irreversibly inactivated after NO treatment, suggesting that a minor part of the products includes cysteine-sulfinic or cysteine-sulfonic acids. CONCLUSIONS: The main products of GAPDH modification by NO are GAPDH-SNO and GAPDH-SOH that is presumably formed due to the hydrolysis of GAPDH-SNO. GENERAL SIGNIFICANCE: The obtained results are important for understanding the molecular mechanism of redox regulation of cell functions and the role of GAPDH in the development of neurodegenerative disorders.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Óxido Nítrico/química , Animais , Catálise , Cicloexanonas/química , Cisteína/análogos & derivados , Cisteína/química , Hidrólise , Óxido Nítrico/metabolismo , Oxirredução , Coelhos , Ácidos Sulfênicos/química
9.
Nat Chem ; 13(11): 1140-1150, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34531572

RESUMO

Triphenylphosphonium ylides, known as Wittig reagents, are one of the most commonly used tools in synthetic chemistry. Despite their considerable versatility, Wittig reagents have not yet been explored for their utility in biological applications. Here we introduce a chemoselective ligation reaction that harnesses the reactivity of Wittig reagents and the unique chemical properties of sulfenic acid, a pivotal post-translational cysteine modification in redox biology. The reaction, which generates a covalent bond between the ylide nucleophilic α-carbon and electrophilic γ-sulfur, is highly selective, rapid and affords robust labelling under a range of biocompatible reaction conditions, which includes in living cells. We highlight the broad utility of this conjugation method to enable site-specific proteome-wide stoichiometry analysis of S-sulfenylation and to visualize redox-dependent changes in mitochondrial cysteine oxidation and redox-triggered triphenylphosphonium generation for the controlled delivery of small molecules to mitochondria.


Assuntos
Indicadores e Reagentes/química , Mitocôndrias/química , Ácidos Sulfênicos/química , Oxirredução , Processamento de Proteína Pós-Traducional , Proteômica/métodos
10.
Org Lett ; 23(9): 3741-3745, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33872038

RESUMO

Oxidation of α-siloxy thioethers leads to the formation of the corresponding sulfoxides as unstable intermediates, which undergo an intramolecular oxygen-to-oxygen silyl migration to break the C-S linkage. This process produces silyl protected sulfenic acids and subsequently thiosulfinates. It was used to develop oxidation-triggered allicin donors.


Assuntos
Dissulfetos/química , Ácidos Sulfênicos/química , Sulfetos/química , Ácidos Sulfínicos/química , Sulfóxidos/química , Estrutura Molecular , Oxirredução
11.
Food Chem ; 353: 129213, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774519

RESUMO

Sulforaphane(SFN) and erucin(ERN) are isothiocyanates (ITCs) bearing, respectively, methylsulfinyl and methylsulfanyl groups. Their chemopreventive and anticancer activity is attributed to ability to modulate cellular redox status due to induction of Phase 2 cytoprotective enzymes (indirect antioxidant action) but many attempts to connect the bioactivity of ITCs with their radical trapping activity failed. Both ITCs are evolved from their glucosinolates during food processing of Cruciferous vegetables, therefore, we studied antioxidant behaviour of SFN/ERN at elevated temperature in two lipid systems. Neither ERN nor SFN inhibit the oxidation of bulk linolenic acid (below 100  °C) but both ITCs increase oxidative stability of soy lecithin (above 150 °C). On the basis of GC-MS analysis we verified our preliminary hypothesis (Antioxidants2020, 9, 1090) about participation of sulfenic acids and methylsulfinyl radicals as radical trapping agents responsible for the antioxidant effect of edible ITCs during thermal oxidation of lipids at elevated temperatures (above 140 °C).


Assuntos
Antioxidantes/química , Isotiocianatos/química , Succinatos/química , Ácidos Sulfênicos/química , Sulfetos/química , Sulfóxidos/química , Tiocianatos/química , Brassicaceae/química , Manipulação de Alimentos , Glucosinolatos/química , Oxirredução
12.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32613242

RESUMO

Protein S-sulfenylation is one kind of crucial post-translational modifications (PTMs) in which the hydroxyl group covalently binds to the thiol of cysteine. Some recent studies have shown that this modification plays an important role in signaling transduction, transcriptional regulation and apoptosis. To date, the dynamic of sulfenic acids in proteins remains unclear because of its fleeting nature. Identifying S-sulfenylation sites, therefore, could be the key to decipher its mysterious structures and functions, which are important in cell biology and diseases. However, due to the lack of effective methods, scientists in this field tend to be limited in merely a handful of some wet lab techniques that are time-consuming and not cost-effective. Thus, this motivated us to develop an in silico model for detecting S-sulfenylation sites only from protein sequence information. In this study, protein sequences served as natural language sentences comprising biological subwords. The deep neural network was consequentially employed to perform classification. The performance statistics within the independent dataset including sensitivity, specificity, accuracy, Matthews correlation coefficient and area under the curve rates achieved 85.71%, 69.47%, 77.09%, 0.5554 and 0.833, respectively. Our results suggested that the proposed method (fastSulf-DNN) achieved excellent performance in predicting S-sulfenylation sites compared to other well-known tools on a benchmark dataset.


Assuntos
Bases de Dados de Proteínas , Redes Neurais de Computação , Processamento de Proteína Pós-Traducional , Análise de Sequência de Proteína , Ácidos Sulfênicos , Ácidos Sulfênicos/química , Ácidos Sulfênicos/metabolismo
13.
Protein Pept Lett ; 28(6): 708-721, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33267753

RESUMO

BACKGROUND: S-sulfenylation (S-sulphenylation, or sulfenic acid) proteins, are special kinds of post-translation modification, which plays an important role in various physiological and pathological processes such as cytokine signaling, transcriptional regulation, and apoptosis. Despite these aforementioned significances, and by complementing existing wet methods, several computational models have been developed for sulfenylation cysteine sites prediction. However, the performance of these models was not satisfactory due to inefficient feature schemes, severe imbalance issues, and lack of an intelligent learning engine. OBJECTIVE: In this study, our motivation is to establish a strong and novel computational predictor for discrimination of sulfenylation and non-sulfenylation sites. METHODS: In this study, we report an innovative bioinformatics feature encoding tool, named DeepSSPred, in which, resulting encoded features is obtained via nSegmented hybrid feature, and then the resampling technique called synthetic minority oversampling was employed to cope with the severe imbalance issue between SC-sites (minority class) and non-SC sites (majority class). State of the art 2D-Convolutional Neural Network was employed over rigorous 10-fold jackknife cross-validation technique for model validation and authentication. RESULTS: Following the proposed framework, with a strong discrete presentation of feature space, machine learning engine, and unbiased presentation of the underline training data yielded into an excellent model that outperforms with all existing established studies. The proposed approach is 6% higher in terms of MCC from the first best. On an independent dataset, the existing first best study failed to provide sufficient details. The model obtained an increase of 7.5% in accuracy, 1.22% in Sn, 12.91% in Sp and 13.12% in MCC on the training data and12.13% of ACC, 27.25% in Sn, 2.25% in Sp, and 30.37% in MCC on an independent dataset in comparison with 2nd best method. These empirical analyses show the superlative performance of the proposed model over both training and Independent dataset in comparison with existing literature studies. CONCLUSION: In this research, we have developed a novel sequence-based automated predictor for SC-sites, called DeepSSPred. The empirical simulations outcomes with a training dataset and independent validation dataset have revealed the efficacy of the proposed theoretical model. The good performance of DeepSSPred is due to several reasons, such as novel discriminative feature encoding schemes, SMOTE technique, and careful construction of the prediction model through the tuned 2D-CNN classifier. We believe that our research work will provide a potential insight into a further prediction of S-sulfenylation characteristics and functionalities. Thus, we hope that our developed predictor will significantly helpful for large scale discrimination of unknown SC-sites in particular and designing new pharmaceutical drugs in general.


Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Processamento de Proteína Pós-Traducional , Proteínas , Ácidos Sulfênicos , Bases de Dados de Proteínas , Aprendizado de Máquina , Proteínas/química , Proteínas/metabolismo , Ácidos Sulfênicos/química , Ácidos Sulfênicos/metabolismo
14.
Int J Biol Macromol ; 166: 221-228, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190823

RESUMO

Human serum albumin (HSA) is the most abundant protein in human plasma and plays versatile biological role. HSA has been widely used to treat several diseases and develop biocompatible biomaterials for biomedical applications. However, pharmaceutical-grade HSA (p-HSA) showed the altered oxidative and ligand-binding properties compare to native HSA. To investigate the influences of the manufacturing process on the molecular state of HSA, we determined the first crystal structure of p-HSA using the commercial HSA solution without any defatting step and further purification and carried out mass spectrometry to identify bound ligands. The crystal structure of p-HSA revealed that medium- and long-chain fatty acids and tryptophan are bound to p-HSA and one free cysteine is oxidized to cysteine-sulfenic acid. The mass spectra of p-HSA also confirmed the existence of fatty acids and tryptophan in p-HSA. Our results enhance understanding of the molecular state of p-HSA and can be utilized to produce p-HSA solutions and HSA-based biomaterials that has a higher biorelevance.


Assuntos
Preparações Farmacêuticas/normas , Albumina Sérica Humana/química , Cristalografia por Raios X , Cisteína/química , Ácidos Graxos/química , Humanos , Oxirredução , Ligação Proteica , Albumina Sérica Humana/normas , Ácidos Sulfênicos/química , Triptofano/química
15.
Anal Chem ; 92(10): 6977-6983, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32314575

RESUMO

Mitochondria plays pivotal roles in energy production and apoptotic pathways. Mitochondria-targeting strategy has been recognized as a promising way for cancer theranostics. Thus, spatiotemporally manipulating the prolonged retention of theranostic agents within mitochondria is considerably significant in cancer diagnosis and therapy. Herein, as a proof-of concept, we for the first time report a sulfenic acid-responsive platform on controlled immobilization of probes within mitochondria for prolonged tumor imaging. A novel near-infrared (NIR) probe DATC constructed with a NIR dye (Cy5) as signal unit, a cationic triphenylphosphonium (TPP) for mitochondria targeting, and a sulfenic acid-reactive group (1,3-cyclohexanedione) for mitochondrial fixation was rationally designed and synthesized. This probe displayed good target ability to mitochondria and could act as a promising fluorescent probe for specific visualization of endogenous protein sulfenic acids expressed in the mitochondria. Moreover, the probe could be spontaneously fixed on site through the specific reaction and covalent binding to the sulfenic acids of oxidized proteins under oxidative stress, resulting in enhanced intracellular uptake and prolonged retention. We thus believe that this mitochondria-targeted and locational immobilization strategy may offer a new insight for long-term tumor imaging and effective therapy.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Carbocianinas/química , Corantes Fluorescentes/química , Mitocôndrias/química , Ácidos Sulfênicos/química , Células 3T3 , Animais , Carbocianinas/metabolismo , Carbocianinas/farmacologia , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/farmacologia , Raios Infravermelhos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Imagem Óptica , Ácidos Sulfênicos/metabolismo
16.
Chembiochem ; 21(9): 1329-1334, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-31802583

RESUMO

Rapid detection of cysteine oxidation in living cells is critical in advancing our understanding of responses to reactive oxygen species (ROS) and oxidative stress. Accordingly, there is a need to develop chemical probes that facilitate proteome-wide detection of cysteine's many oxidation states. Herein, we report the first whole-cell proteomics analysis using a norbornene probe to detect the initial product of cysteine oxidation: cysteine sulfenic acid. The oxidised proteins identified in the HeLa cell model represent the first targets of the ROS hydrogen peroxide. The panel of protein hits provides new and important information about the targets of oxidative stress, including 148 new protein members of the sulfenome. These findings provide new leads for the study and understanding of redox signalling and diseases associated with oxidative stress.


Assuntos
Cisteína/análogos & derivados , Cisteína/química , Norbornanos/química , Estresse Oxidativo , Proteoma/metabolismo , Ácidos Sulfênicos/química , Células HeLa , Humanos , Oxirredução , Proteoma/análise , Transdução de Sinais
17.
Org Biomol Chem ; 17(48): 10245-10250, 2019 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-31793609

RESUMO

A general and simple metal-free protocol for expedient C-H functionalization leading to the regioselective generation of C-5 chalcogenated 8-aminoquinoline analogues in up to 90% yield at room temperature (25 °C) has been established. This methodology is an eco-friendly approach to the atom-economical utilization of diaryl/dialkyl chalcogenides for direct access to chalcogenated quinolines and is scalable to the gram scale without considerable decrease in the yield of the product. It represents a practical alternative to the existing metal-catalyzed functionalization of 8-aminoquinoline derivatives with broad functional group tolerance. The controlled experiments suggest that the reaction possibly proceeds through an ionic pathway at room temperature. Furthermore, the potentiality for the functionalization of free amines in chalcogenated-8-aminoquinolines provides an attractive perspective for further elaboration of the amine substituent through chemical manipulations. The applicability of the standardized method has been augmented through late-stage antimalarial drug diversification of primaquine analogues.


Assuntos
Aminoquinolinas/síntese química , Aminas/química , Catálise , Iodo/química , Estrutura Molecular , Oxirredução , Ácido Selênico/química , Solventes/química , Estereoisomerismo , Ácidos Sulfênicos/química
18.
Free Radic Biol Med ; 145: 1-7, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31521665

RESUMO

Hydrogen peroxide undergoes an equilibrium reaction with bicarbonate/CO2 to produce peroxymonocarbonate (HCO4-). Peroxymonocarbonate is more reactive with thiols than H2O2 but it makes up only a small fraction of the H2O2 in physiological bicarbonate buffers so the increase in rate of oxidation of low molecular weight thiols is modest. However, for some thiol proteins such as protein tyrosine phosphatases, the rate enhancement is very much greater. We have investigated the effect of bicarbonate/CO2 on the oxidation of peroxiredoxins (Prdxs) 2 and 3. Using an assay in which reduced Prdx2 inhibits oxidation of horseradish peroxidase by H2O2, we saw no difference between phosphate and bicarbonate buffers (pH 7.4). However, hyperoxidation of both Prdxs in bicarbonate was considerably enhanced. Hyperoxidation involves the reaction of the sulfenic acid formed at the active site with a second H2O2, and prevents its condensation to a disulfide. Using LC/MS analysis, we determined that the presence of 25 mM bicarbonate/CO2 increased the ratio of hyperoxidation compared with condensation 6-fold for Prdx2 and 11-fold for Prdx3. These results imply that Prdx hyperoxidation will occur more readily under physiological conditions than appreciated from in vitro experiments, which seldom use bicarbonate buffers. They also raise the possibility that variations in bicarbonate concentration could provide a mechanism for regulating the cellular level of active Prdxs.


Assuntos
Dióxido de Carbono/química , Peróxido de Hidrogênio/química , Peroxirredoxina III/química , Peroxirredoxinas/química , Bicarbonatos , Carbonatos , Dissulfetos/química , Peroxidase do Rábano Silvestre/química , Humanos , Cinética , Oxirredução , Peroxirredoxina III/genética , Peroxirredoxinas/genética , Ácidos Sulfênicos/química , Compostos de Sulfidrila/química
19.
Molecules ; 24(17)2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31454893

RESUMO

Glutathione-based products, GSnX, of the reaction of hydrogen sulfide, H2S, S-nitroso glutathione, and GSNO, at varied stoichiometries have been analyzed by liquid chromatography high-resolution mass spectrometry (LC-HRMS) and chemical trapping experiments. A wide variety of glutathione-based species with catenated sulfur chains have been identified including sulfanes (GSSnG), sulfides (GSSnH), and sulfenic acids (GSnOH); sulfinic (GSnO2H) and sulfonic (GSnO3H) acids are also seen in reactions exposed to air. The presence of each species of GSnX within the original reaction mixtures was confirmed using Single Ion Chromatograms (SICs), to demonstrate the separation on the LC column, and given approximate quantification by the peak area of the SIC. Further, confirmation for different GSnX families was obtained by trapping with species-specific reagents. Several unique GSnX families have been characterized, including bridging mixed di- and tetra-valent polysulfanes and internal trithionitrates (GSNHSnH) with polysulfane branches. Competitive trapping experiments suggest that the polysulfane chains are formed via the intermediacy of sulfenic acid species, GSSnOH. In the presence of radical trap vinylcyclopropane (VCP) the relative distributions of polysulfane speciation are relatively unaffected, suggesting that radical coupling is not a dominant pathway. Therefore, we suggest polysulfane catenation occurs via reaction of sulfides with sulfenic acids.


Assuntos
Glutationa/química , Ácidos Sulfênicos/química , Sulfetos/química , Cromatografia Líquida , Sulfeto de Hidrogênio/química , Cinética , Espectrometria de Massas , S-Nitrosoglutationa/química
20.
Molecules ; 24(15)2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-31366103

RESUMO

Oxidation of sulfide to sulfate is known to consist of several steps. Key intermediates in this process are the so-called small oxoacids of sulfur (SOS)-sulfenic HSOH (hydrogen thioperoxide, oxadisulfane, or sulfur hydride hydroxide) and sulfoxylic S(OH)2 acids. Sulfur monoxide can be considered as a dehydrated form of sulfoxylic acid. Although all of these species play an important role in atmospheric chemistry and in organic synthesis, and are also invoked in biochemical processes, they are quite unstable compounds so much so that their physical and chemical properties are still subject to intense studies. It is well-established that sulfoxylic acid has very strong reducing properties, while sulfenic acid is capable of both oxidizing and reducing various substrates. Here, in this review, the mechanisms of sulfide oxidation as well as data on the structure and reactivity of small sulfur-containing oxoacids, sulfur monoxide, and its precursors are discussed.


Assuntos
Safrol/análogos & derivados , Ácidos Sulfênicos/química , Sulfetos/química , Radicais Livres , Sulfeto de Hidrogênio/química , Cinética , Oxirredução , Óxidos/química , Peróxidos/química , Safrol/química , Sulfatos/química , Compostos de Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...